Instructions:

- Do not open the exam until you are instructed to do so.
- Write your name on the front of the exam.
- Answer the questions in the spaces provided. If you run out of room for an answer, continue on the back of the page.
- If you need more paper, ask one of the proctors and we will provide it.

Math 100A - Midterm - 11/1/2017

Name: \qquad

Question:	1	2	3	4	5	Total
Points:	5	8	5	6	6	30
Score:						

1. Let G and H be groups.
(a) (1 point) Give the definition of a subgroup of G.
(b) (1 point) Let $\varphi: G \rightarrow H$ be a group homomorphism, give the definition of $\operatorname{Ker}(\varphi)$, the kernel of φ.
(c) (3 points) Prove that the kernel of φ is a subgroup of G.
2. Let G be a finite group.
(a) (4 points) Let $e \in G$ be the identity, and let $x \in G$ an arbitrary element. Prove that there exists a positive integer $n>0$ such that $x^{n}=e$.
(b) (4 points) Suppose $x^{2}=e$ for all $x \in G$. Prove that G is abelian.
3. (a) (1 point) Let S be a set. Give the definition of an equivalence relation \sim on S.
(b) (4 points) Let H be a subgroup of a group G. Prove that the relation

$$
x \sim y \Longleftrightarrow x * y^{-1} \in H
$$

is an equivalence relation on G.
4. (a) (1 point) Let n be a positive integer. Define what it means for two integers $a, b \in \mathbb{Z}$ to be congruent modulo n.
(b) (5 points) Recall that

$$
U_{n}:=\left\{[a] \in \mathbb{Z}_{n} \mid(a, n)=1\right\}
$$

Prove that if $[a] \in U_{n}$, then there exists $[b] \in U_{n}$ such that $[a \cdot b]=1$ (in other words, multiplication in U_{n} has inverses).
5. Let G be a group.
(a) (1 point) Give the definition of $Z(G)$, the center of G.
(b) (5 points) Prove that the center of D_{8} is $\left\langle r^{2}\right\rangle=\left\{1, r^{2}\right\} \leq D_{8}$.

